NPDES PERMITTING COURSE FOR PERMITTEES – PART II

Imposition of NPDES Permit Effluent Limitations

Clean Water Professionals of Kentucky and Tennessee

by

Gary B. Cohen and Bill Hall Hall & Associates Washington, D.C. April 14, 2020

BASIS FOR PERMIT EFFLUENT LIMITATIONS

Usually Two-Types of Effluent-Limits

- Technology-Based Effluent Limits (TBELs)
- Water Quality-Based Effluent Limits (WQBELs)

• BUT:

NJ: EEQ (Existing Effluent Quality)TN: Antidegradation-Based

OBJECTIVES

PERMITTING AGENCY

1. Protection of Environment

- 2. Expeditious and Non-adversarial Permitting
- 3. Cost of Compliance but secondary to #2
- 4. Understaffed/Overworked with Limited Resources

PERMITTEE

Protection of the Environment in a Cost-Effective Manner

Expeditious and Nonadversarial Permitting

Cost of Compliance – Primary to #2.

Minimize Risk of Noncompliance

TBELS

- Effluent Limits Applicable to a Category or Class of Discharges Based Upon the Technology Available to Treat the Pollutants.
- CWA Goal: Zero Discharge
- Can be More or Less Stringent than the Level Necessary to Protect the Receiving Water
- Some Have Described it as "Treatment for Treatment Sake."

SECONDARY TREATMENT STANDARDS FOR MUNICIPAL DISCHARGERS

Parameter	30-Day Average	7-Day Average
BOD ₅ / CBOD ₅	30/25 mg/L	45/40 mg/L
TSS	30 mg/L	45 mg/L
рН	Range: 6.0 – 9.0	
Percent Removal	85% (monthly average) for BOD ₅ /TSS	

SECONDARY TREATMENT ADJUSTMENTS

 Adjustment of BOD/TSS Limits Based Upon Significant Industrial Influent

 Adjustment of Percent Removal Based Upon Dilute Influent

Equivalent-to-secondary limits:

 Up to 45 mg/l (30 day average)
 Up to 65 mg/l (7 day average)
 Not less than 65% removal

INDUSTRIAL FACILITIES

- Effluent Limitation Guidelines (ELGs)
 - BPT: Best Practicable Control Technology Currently Available
 - BCT: Best Conventional Pollutant Control Technology
 - BAT: Best Available Control Technology Economically Achievable
 - NSPS: New Source Performance Standards
- Best Professional Judgment (BPJ)
- Direct Discharger vs Indirect Discharger

POTENTIAL INCREASED STRINGENCY UNDER ELGS

NSPS: New Source Performance Standards

BCT: Best Conventional Pollutant Control Technology BAT: Best Available Control Technology Economically Achievable

BPT: Best Practicable Control Technology Currently Available

TYPICAL EFFLUENT LIMITATION DEVELOPMENT

No

Develop Technology-Based Effluent Limits for All Pollutants of Concern

Will Limits Assure Compliance with Applicable Water Quality Standards?

Yes

Include Applicable Effluent Limits in NPDES Permit Develop Water Quality-Based Effluent Limits

WHEN IS A WQBEL REQUIRED?

- Reasonable Potential Test 40 CFR § 122.44(d) or State Standard
- Limitations Must Control Pollutants or Pollutant Parameters (Either Conventional, Nonconventional, or Toxic Pollutants) That Are or May be Discharged <u>at a</u> <u>Level Which Will Cause, Have the Reasonable Potential</u> to Cause, or Contribute to an Excursion Above any State Water Quality Standard, including State Narrative Criteria for Water Quality. [§ 122.44(d)]
- Cause or Contribute is Not a Prohibition!
- Permit Limit May be Numeric or Best Management Practice (BMP)

FACTS PREEMPT ASSUMPTIONS

- Potential Concern: You Know What They Say When Someone "Assumes"
- Assumptions Result in More Stringent Permit Limits than Necessary to Protect Water Quality
- Who Do You Think Will Likely Be Tracking Down the Facts to Dispel Inappropriate Assumptions?

Who has the Greater Interest?

NO WQBEL REQUIRED

No Reasonable Potential = No WQBEL. So no Effluent Limitation Unless TBEL. • Would This be Good News to the **Permittee?** - In the Newly Reissued NPDES Permit? - What About Future Reissued NPDES **Permits?**

TDEC ANTIDEGRADTION EFFLUENT LIMITS

- Future Permit Providing for Increased Discharges Triggering Antidegradation
- Applies to Degradation Above *De Minimis* Levels
- If Permit Limit, Antidegradation Decision
 Based on Pre-Expansion Permitted Levels

 BUT, if no Permit Limit, Antidegradation Based on Pre-Expansion Actual Discharge Levels

EXAMPLE ANTIDEGRADTION EFFLUENT LIMITS

- Actual Discharge of copper at 20 mgd = 20 ug/l.
- No Reasonable Potential = No WQBEL (and no TBEL)
- Calculated WQBEL for Copper Would Have Been 100 ug/l.
- Seeking Facility Expansion to 30 mgd.
- Would Still be no Reasonable Potential.
- But Antidegradation Based Upon Loadings at 20 ug/l Plus De Minimis Increase = 14 ug/l.
- Should Permittee:
 - Request Otherwise Unnecessary Permit Limits?
 - Provide Justification Based Upon Important Economic or Social Development?

WQBELS

- Objective: Ensure Compliance with Designated Uses by Meeting Water Quality Criteria for Aquatic Life Uses, Recreation, Water Supply, Etc.
- Assumption: If Water Quality Criteria are Achieved In-stream, Uses are Protected.
- WQC: Magnitude, Duration, Frequency
- WQBELs are Often Developed for Critical Conditions. If Objective is Achieved for Critical Conditions, it Will be Achieved for All Other Conditions.

PARAMETERS OF CONCERN

Metals: Copper, Zinc, Lead, Mercury

- Organics: Volatiles/Non-Volatiles, PCBs, Disinfection Byproducts
- Ammonia-nitrogen
- Whole Effluent Toxicity (WET)
- Salts: Chloride, Sulfate, Conductivity, etc.

WATER QUALITY-BASED EFFLUENT LIMITS

Simple Mass Balance Equation

 $C_s(Q_e + D_f Q_b) = C_e Q_e + C_b D_f Q_b$

Where:

 $\begin{array}{l} C_{s} = \mbox{Water Quality Criterion ($\mu g/L$)} \\ C_{e} = \mbox{Effluent Limit ($\mu g/L$)} \\ C_{b} = \mbox{Background Concentration ($\mu g/L$)} \\ Q_{e} = \mbox{Effluent Flow (MGD)} \\ Q_{b} = \mbox{Receiving Water Flow (MGD)} \\ D_{f} = \mbox{Dilution Factor (decimal)} \end{array}$

WATER QUALITY-BASED EFFLUENT LIMITS

Solving for Waste Load Allocation

 $C_e = \frac{\left(C_s \left[Q_e + D_f Q_b\right] - C_b D_f Q_b\right)}{Q_e}$

POTENTIAL ASSUMPTIONS OF CONCERN

Default Values in WQBELs • Toxic Fraction - Total Recoverable (Very Conservative) - Dissolved Fraction (Better, But Still Conservative) - Water Effect Ratio **Biotic Ligand Model (BLM)** Steady-State vs Drifting Organism Non-Detects in Permit Application: **Assumption that Discharge Occurs at Detection Level**

WATER QUALITY CRITERION

• Is it a Fixed Concentration?

- Yes (e.g., Chlorine) Use Criteria Directly in Simple Mixing Equation
- No (e.g., Copper Dependent upon Other Factors pH, Dissolved Organic Carbon, Hardness, Other Cations and Anions) – Requires Further Analysis
- No (e.g., Ammonia-nitrogen Dependent upon pH, Temperature, Presence of Early Life Stages, Presence of Sensitive Mussels or Salmonids) – Seasonal Analysis Required
- Acute Criterion (toxicity); Chronic/Human Health (Growth, Reproduction, Health Effects)

CRITICAL RECEIVING WATER FLOW

- Harmonic Mean Carcinogens (Criteria Based on 70-year Exposure)
- 7Q10 Most Acute and Chronic Criteria
- 30Q10 Ammonia-nitrogen (Chronic Criterion 30-day Average Concentration); Human Health Parameters

 1Q10 – May be Appropriate for Acute Criteria if Parameter is a Fast-Acting Toxicants (Most Toxicants are not Fast Acting)

Stream Flows Change with Time. Check for Fundamental Changes due to Changes in Hydrology (Impoundments, Tile Drains)

SEASONAL FLOWS

 What if Criteria differ during Seasons?
 Example: Ammonia (Criterion is a Function of pH, Temperature, Life Stage)

Critical Flows Can be Based Upon Seasons

In other words, Permit Writer can use a Higher Winter Critical Flow to Avoid having Overly Stringent Winter Limits based upon Critical Low Flow during the Summer.

DILUTION FACTOR

• Evaluated in Zone of Initial Dilution (ZID) and **Edge of Regulatory Mixing Zone** • Acute Criteria – Applied at Edge of ZID or **Evaluated as Average Exposure for 1-hour Drift** Ohronic Criteria – Applied at Edge of Regulatory **Mixing Zone**

Seasonal Effects?

Options for Improving Dilution Factor

DILUTION FACTOR

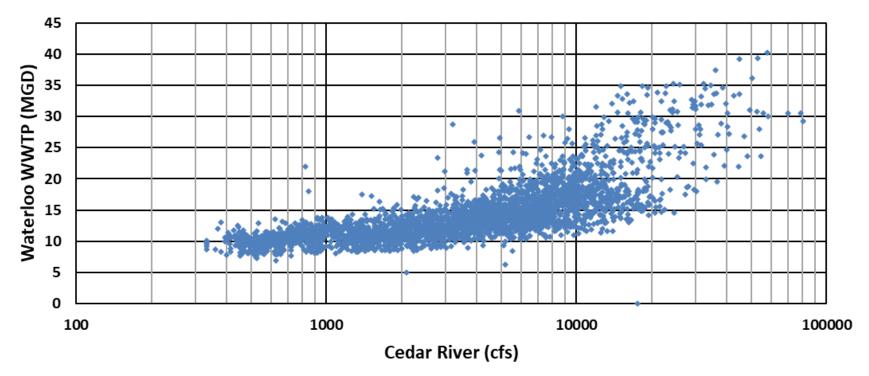
Options for Increasing Dilution Factor

Do a Dye Study – Confirm Actual Dilution
 Install a Diffuser
 Bring Flow to Outfall (Under Design Conditions)

EFFLUENT FLOW

Typically use Design Flow
Other Considerations

Wet Weather versus Dry Weather
How does Facility Flow vary with Stream Flow?


Tiered Permit Limits Based Upon Different Plant Flows

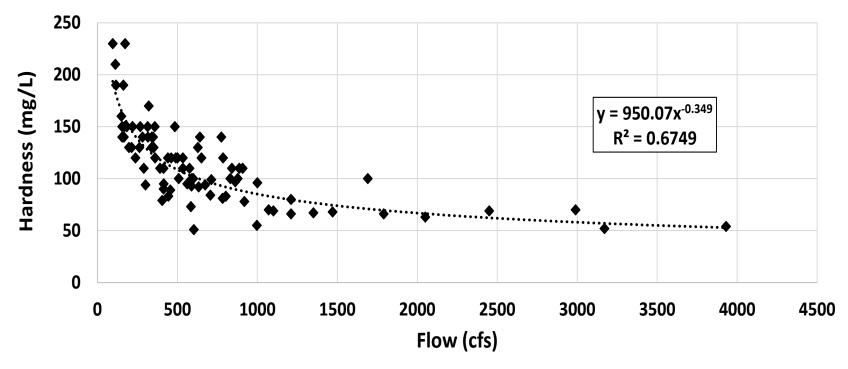
Current Flow << Design Flow

Issue With Mass-Based Limits

EFFLUENT FLOW

Waterloo WWTP vs Cedar River Flow

Effluent flow correlated with stream flow – use effluent flow expected at 7Q10


BACKGROUND CONCENTRATION

• Characterization of Background Conditions • What Concentration should be Used? - Maximum - High Percentile - Average/Median Typically, an Average or Median Concentration should be used because the Calculation Methodology is already **Conservative (Assume High Discharge Concentration** Occurs during 7Q10). However, Need to Check whether **Higher Background Concentration is Correlated with Low**

Flow Conditions.

BACKGROUND CONCENTRATION

Schuylkill River at Berne, PA (USGS Gage)

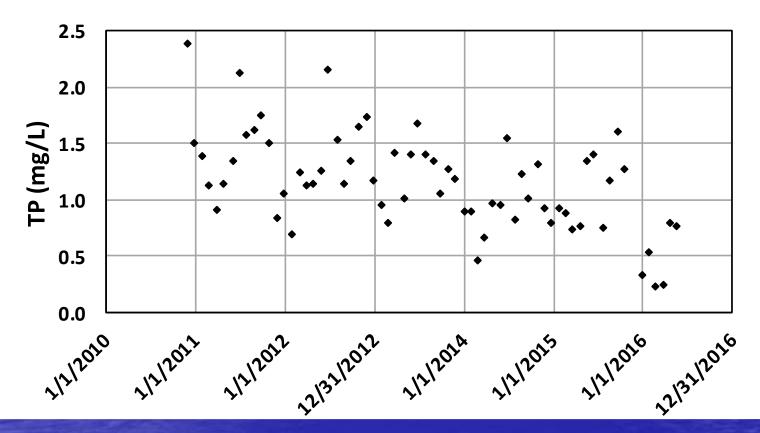
Variability of Hardness with Stream Flow – Background Hardness may Increase under Drought Flow Conditions – Important for Hardnessbased Criteria.

OTHER CONSIDERATIONS

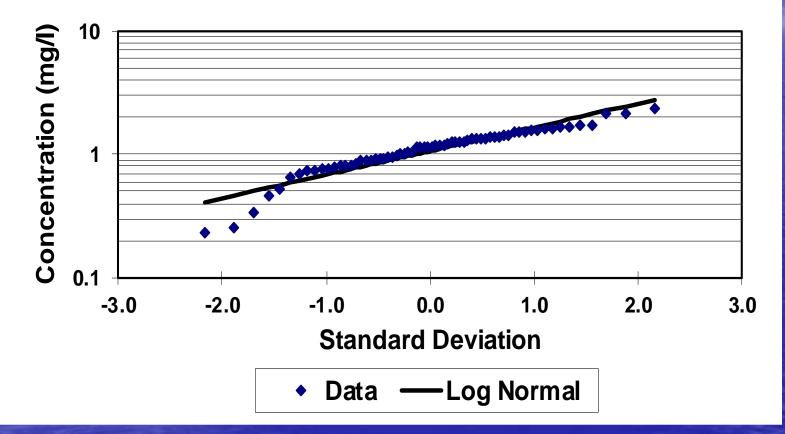
Steady State

- Mass Balance Approach
- Evaluation at Edge of Mixing Zone
- Conservative
- Drifting Organism
 - Consideration of Mixing Zone Size and Travel Time
 - Account for Increase in Dilution with Distance
 - Fate of Pollutant with Time (Important for Chlorine)
 - Calculate Flux-Averaged Concentration over Time
- Probabilistic Modeling
 - Need Lots of Data
 - Correlations are Considered
 - WQBEL Based on Frequency of Exceedance (Once in Three Years, on Average)

CONVERSION TO PERMIT LIMITS

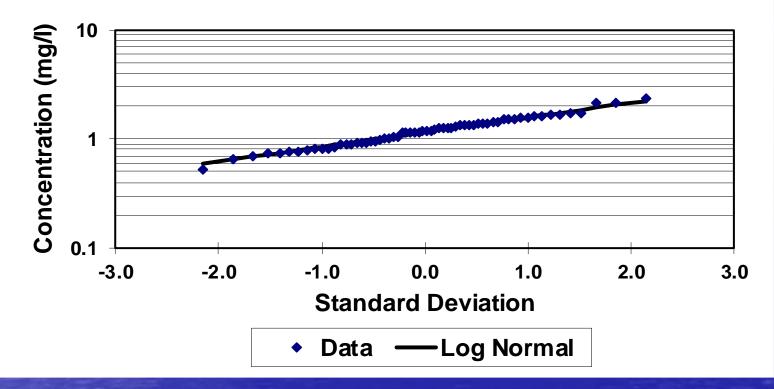

Converting WLAs to Effluent Limits

 Determine Acute and Chronic WLAs
 Determine corresponding Long-Term Averages (LTAs) – function of CV, n, and p)

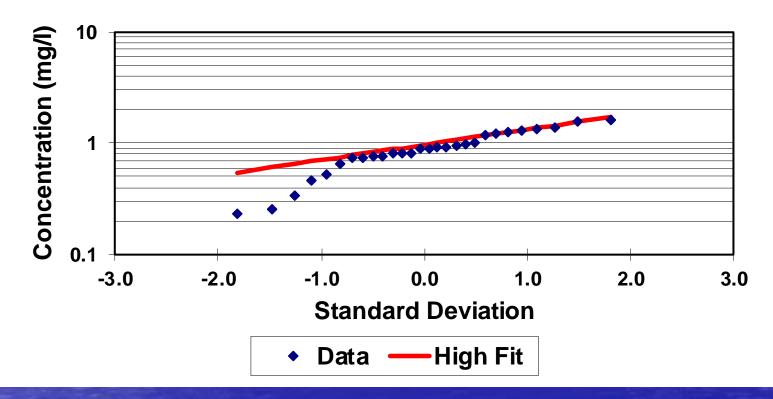

 $\sigma_n = \sqrt{\ln \left(\frac{CV^2}{n} + 1\right)}$ $LTA = WLA \ x \ EXP(0.5\sigma_n^2 - Z_p\sigma_n)$ -Using Minimum LTA, Calculate MDL, AML $MDL = LTA_{min} \ x \ EXP(Z_p\sigma_1 - 0.5\sigma_1^2)$ $AML = LTA_{min} \ x \ EXP(Z_p\sigma_n - 0.5\sigma_n^2)$

See EPA TSD (1991) for Statistical Methods

Franklin WRF - Performance Data



Franklin WRF - Performance Data


CV = 0.47; AML = 2.99 mg/L at 99th Percentile

Franklin WRF - Performance Data

Fit Data to Upper End of Distribution to Better Fit High Concentrations. CV = 0.32; AML = 2.38 mg/L at 99th Percentile

Franklin WRF - Performance Data

Use More Recent Data based on Steady Decline. Fit Data to Upper End of Distribution to Better Fit High Concentrations. CV = 0.32; AML = 2.02 mg/L at 99th Percentile

Gary B. Cohen Bill Hall Hall & Associates 1629 K Street, N.W. Washington, DC 20006 (202) 463-1166 gcohen@hall-associates.com